

Crossbreeding in Danish dairy cattle

Elise Norberg, Morten Kargo & Kevin Byskov

<u>Se "European Agricultural Fund for Rural Development" (EAFRD)</u>

Some background

- > Used for decades in pigs & poultry
- > Getting more common in dairy cattle relatively long tradition in NZ
- > Quite a few studies done in the US:
 - > Beltsville
 - > Illinois
 - > Minnesota
 - > California
 - >

> Lack of purebred animals when estimating breed effects

Some background

- > Increasing popularity in Denmark
- > A new system called Combi-Cross up and running
 - > A cooperation between Viking Genetics, Advisory Center and University
 - > Pure breeding and cross breeding are combined
 - > Sexed Semen is used to maintain purebred nucleus
 - > F1 crosses express full heterosis
 - > 3-way crosses are mated to beef bulls

Combi-Cross

Some background

- > Increasing popularity in Denmark
- > Combi-Cross up and running
 - > A cooperation between Viking Genetics, Advisory Center and University
 - > Pure breeding and cross breeding are combined
 - > Sexed Semen is used to maintain purebred nucleus
 - > F1 crosses express full heterosis
 - > 3-way crosses are mated to beef bulls

> Parameters need to be estimated

Aim:

Estimate heterosis and effect of breed proportion on milk yield traits in crosses between: Danish Holstein (DH), Danish Red (DR) & Danish Jersey (DJ)

Data

- > 305d Milk, Fat and Protein Yield
- > 1st parity cows with more than 45 DIM and calving age 18-40 mo.
- > 104 herds and ~ 56,000 animals
- > About 50% were crosses between DH, DR and/or DJ
- > Breed proportion in crossbred cows:

Danish Holstein:	51%
Danish Red:	38%
Danish Jersey	9%

Model

Yield

=

herd*year + calving age + calving month + calving interval + breed porportion + heterozygozity + add. gen. eff. + e fixed fixed fixed regression fixed regression fixed regression random random

Mean yield and effect of breed proportion (BP) - kg

	Milk Yield		Protein Yield		Fat Yield	
	Mean	Effect BP	Mean	Effect BP	Mean	Effect BP
Danish Holstein	8232	0	273.6	0	321.2	0
Danish Red	7659	-185*	265.5	-4.3*	322.2	-8.9
Danish Jersey	5204	-1775	208.7	-39.9	298.7	-0.41

*not significant

Heterosis

	Milk Yield		Protein Yield		Fat Yield	
	kg	%	kg	%	kg	%
DH x DR	170	2.14	5.99	2.22	8.77	2.73
DH x DJ	251	3.74	11.7	4.85	17.5	5.64
DR x DJ	371	5.77	14.2	5.99	20.2	6.51

Conclusions

- > Effect of heterosis largest for Fat Yield
- > Most heterosis between Danish Red x Danish Jersey
- > Udder health and fertility next

Conclusions

- > Effect of heterosis largest for Fat Yield
- > Most heterosis between Danish Red x Danish Jersey
- > Udder health and fertility next

Thank you for your attention!

